
CSCI 210: Computer Architecture
Lecture 4: Introduction to MIPS

Stephen Checkoway

Oberlin College

Slides from Cynthia Taylor

1

Announcements

• Problem Set 1 due Friday 11:59 p.m.

Why you should learn (a little) assembly

• Learn what your computer is fundamentally capable of

• By learning about how high-level mechanisms are created in
assembly, we learn what is fast, what is slow . . .

• Might use it for reverse engineering, embedded systems,
compilers

CS History: Sophie Wilson

Developed the ARM Instruction Set Architecture

The MIPS Instruction Set

• Used as the example throughout the book

• Stanford MIPS commercialized by MIPS Technologies (owned by John L.
Hennessy, who wrote your book.)

• Used in Embedded Systems

– Applications in consumer electronics, network/storage equipment, cameras,
printers, …

• Typical of many modern ISAs

– Most similar to ARM, RISC-V

Three Types of Instruction

• Arithmetic and logical (R)

– Operates on data entirely in registers

• Immediate (I)

– One of the operands is encoded directly in the instruction

• Jump (J)

– Changes the pc to a new location

Arithmetic and Logical Operations

• Add and subtract, three operands

– Two sources and one destination

 add a, b, c # a = b + c

 sub a, b, c # a = b – c
and a, b, c # a = b & c (bit-wise AND)

• All arithmetic and logical operations have this form

Convert to MIPS: f = (g + h) - (i + j);

A.

B.

C.

D. More than one of these is correct

add t0, g, h
add t1, i, j
sub f, t0, t1

sub f, (add g,h), (add i,j)

add f, g, h
sub f, i, j add a, b, c # a = b + c

 sub a, b, c # a = b – c

Register Operands

• Arithmetic instructions use register operands

• MIPS has 32 32-bit general purpose registers
– Numbered 0 to 31

– 32-bit data called a “word”

• ARM has 37 32-bit general purpose registers

• X86-64 has 16 general purpose registers, around 40 named registers
used by the processor
– Can be used as 8, 16, 32, or 64 bit registers

Aside: MIPS Register Convention
Name Register

Number
Usage

$zero 0 constant 0 (hardware)

$at 1 reserved for assembler

$v0–$v1 2–3 returned values

$a0–$a3 4–7 arguments

$t0–$t7 8–15 temporaries

$s0–$s7 16–23 saved values

$t8–$t9 24–25 temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return addr (hardware)

Register Operand Example

• C code:

 f = (g + h) - (i + j);

– f, g, h, and j in registers $s0, $s1, $s2, $s3, and $s4

• Compiled MIPS code:

 add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Some R-type instructions

• add dest, src1, src2

• sub dest, src1, src2

• mul dest, src1, src2 # Pseudoinstruction!

• div dest, src1, src2

• move dest, src # add dest, $zero, src

• and dest, src1, src2

• or dest, src1, src2

• nor dest, src1, src2

• xor dest, src1, src2

Assume registers initially have the
following values

What values do they have after
running this code?

move $t0, $a0

add $t1, $a0, $a0

add $t1, $t1, $t1

sub $t0, $t1, $t0

add $v0, $t0, $a1

$a0 $a1 $t0 $t1 $v0

2 100 5 6 7

$a0 $a1 $t0 $t1 $v0

A 2 100 5 6 7

B 2 100 6 8 106

C 5 -10 -17 22 7

D 5 100 15 20 115

E None of the above

Questions about Arithmetic Operations?

Memory Instructions

• lw $t0, 0($t1)

– $t0 = Mem[$t1+0]

– Loads 4 bytes from $t1, $t1+1, $t1+2, and $t1+3

• sw $t0, 4($t1)

– Mem[$t1+4] = $t0

– Stores 4 bytes at $t1+4, $t1+5, $t1+6, and $t1+7

• These instructions are the cornerstones of our being able to go
to and from memory

Load instructions

• lw — Loads 4 bytes of memory into a register

– lw $t0, 8($t4)

• lh — Loads 2 bytes of memory into a register

– lh $t2, 6($t1)

• lb — Loads 1 byte of memory into a register

– lb $t3, 3($t0)

• lw and lb are more common than lh

Store instructions

• sw — Stores 4 bytes from a register into memory

– sw $t0, 8($t4)

• sh — Stores 2 bytes from a register into memory

– sh $t2, 6($t1)

• sb — Stores 1 byte from a register into memory

– sb $t3, 3($t0)

• sw and sb are more common than sh

18

Accessing the Operands

There are typically two locations for operands – registers (internal storage
e.g., $t0 or $a0) and memory. In each column we have which—reg or
mem—is better. Which row is correct?

Faster access Smaller number to specify
which reg/mem location

More locations

A Mem Mem Reg

B Mem Reg Mem

C Reg Mem Reg

D Reg Reg Mem

E None of the above

Load-store architectures
can do:

load r3, M(address)

 add r1 = r2 + r3

 forces heavy dependence
on registers, which is
exactly what you want in
today’s CPUs

can’t do

 add r1 = r2 + M(address)

- more instructions

+ fast implementation

Memory

• Main memory used for composite data
– Arrays, structures, dynamic data

• Memory is byte addressed
– Each address identifies an 8-bit byte

• Words are aligned in memory
– Address of a word must be a multiple of 4

Memory Organization

• Viewed as a large, single-dimension array, with an address.

• A memory address is an index into the array

• “Byte Addressing" means that the index points to a byte of
memory.

0

1

2

3

4

5

6

...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

Memory Organization

• Bytes are nice, but most data items use larger "words"
• For MIPS, a word is 32 bits or 4 bytes.

• 232 bytes with byte addresses from 0 to 232 - 1

• 230 words with byte addresses 0, 4, 8, ... 232 - 4

0

4

8

12

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

If you have a pointer to address 1000 and you increment it by one to 1001. What
does the new pointer point to, relative to the original pointer?

A) The next word in memory

B) The next byte in memory

C) Either the next word or byte – depends on if you use that address for a load byte
or load word

D) Pointers are a high level construct – they don’t make sense pointing to raw
memory addresses.

E) None of the above.

If a 4-byte word is in memory at address 4203084, what is the address of the next
word in memory?

A) 4203085

B) 4203088

C) 14203084

D) It depends on the value of the words in memory

E) Since a word is 4 bytes, it’s not possible to have one at address 4203084

Arrays

• Arrays are stored consecutively in memory

• The base address points to the first element in the array

• Accessing other elements in the array requires adding an offset
to the base address

– The offset to use is the index of the array element * the size of one
element

Memory Operand Example 1

• C code:

 g = h + A[8];

– g in $s1, h in $s2, base address of A in $s3

– A is an array of 4 byte integers

• Compiled MIPS code:

– Index 8 requires offset of 32

 lw $t0, 32($s3)
add $s1, $s2, $t0

Translate to MIPS

• C code: g = h + A[5];
– g in $s1, h in $s2, base address of A in $s3.
– A is an array of 4-byte ints

A.

B.

C.

D.

lw $t0, 20($s3)
add $s1, $s2, $t0

lw $t0, 5($s3)
add $s1, $s2, $t0

lw $t0, $s5
add $s1, $s2, $t0

lw $t0, $s3
add $s1, $s2, $t0

Memory Operand Example 2

• C code:

 A[12] = h + A[8];

– h in $s2, base address of A in $s3

• Compiled MIPS code:

– Index 8 requires offset of 32; index 12 requires offset 48

 lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

When a 2-byte word is stored in byte-
addressed memory (occupying two

consecutive bytes), is the most
significant byte (MSB) stored in the

lower address or the higher address?

A. Low

B. High

C. It Depends

0000 0000

0000 1111

0000 0000

0000 1111
= 15

= 15

0

1

0

1

Byte ordering

• Big-endian: Most significant byte in lowest address

– MIPS, Motorola 68000, PowerPC (usually), SPARC (usually), …

• Little-endian: Most significant byte in highest address

– Intel x86, x86-64, ARM (usually), …

• Bi-endian: Switchable between big and little endian

– ARM, PowerPC, Alpha, SPARC, …

• Middle-endian/mixed-endian

– Bytes not stored in either order, at least in some cases

Big-endian means most significant byte/digit/piece comes first, little-
endian means least significant byte/digit/piece comes first. Mixed-
endian means not in order.

Which row of the table correctly identifies the endianness of date
formats?

US (MM-DD-YYYY) Most of the world (DD-MM-YYYY) ISO 8601 (YYYY-MM-DD)

A Little Mixed Big

B Big Little Mixed

C Mixed Little Big

D Mixed Big Little

E Little Big Mixed

Reading

• Next lecture: Assembly

– 2.3

• Problem Set 1: Due Friday at 10:00 pm

32

	Slide 1: CSCI 210: Computer Architecture Lecture 4: Introduction to MIPS
	Slide 2: Announcements
	Slide 3: Why you should learn (a little) assembly
	Slide 4: CS History: Sophie Wilson
	Slide 5: The MIPS Instruction Set
	Slide 6: Three Types of Instruction
	Slide 7: Arithmetic and Logical Operations
	Slide 8: Convert to MIPS: f = (g + h) - (i + j);
	Slide 9: Register Operands
	Slide 10: Aside: MIPS Register Convention
	Slide 11: Register Operand Example
	Slide 12: Some R-type instructions
	Slide 13
	Slide 14: Questions about Arithmetic Operations?
	Slide 15: Memory Instructions
	Slide 16: Load instructions
	Slide 17: Store instructions
	Slide 18: Accessing the Operands
	Slide 19: Load-store architectures
	Slide 20: Memory
	Slide 21: Memory Organization
	Slide 22: Memory Organization
	Slide 23
	Slide 24
	Slide 25: Arrays
	Slide 26: Memory Operand Example 1
	Slide 27: Translate to MIPS
	Slide 28: Memory Operand Example 2
	Slide 29: When a 2-byte word is stored in byte-addressed memory (occupying two consecutive bytes), is the most significant byte (MSB) stored in the lower address or the higher address?
	Slide 30: Byte ordering
	Slide 31
	Slide 32: Reading

